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Circular Arc Helical Gears: Generation, Geometry, Precision
and Adjustment to Errors, Computer Aided Simulation of Conditions
of Meshing and Hearing Contact.

by Faydor L. Litvin
Professor of Mechanical Engineering

Member ASME

Chung-Biau Tsav
Research Assistant

University of Illinois at Chicago, IL 60680

1. Introduction and Principles of Generation

Circular arc helical gears (Wildhaber - Novikov gears) have

the following advantages over involute helical gears: (a) there

is reduced contacting stresses and (b) the conditions of

lubrication are better. The disadvantages of the circular arc

helical gears are: (a) higer bending stresses, (b) the

sensitivity to the change of center distance and (c) a more

complicated shape of the tool. The bending stresses can be

reduced by appropriate proportions of tooth elements. The effect

of dislocation of the bearing contact due to the change of the

gear center distance can be reduced by appropriate relations

between the principal curvatures of the gears and may even be

compensated technologically. Circular arc gears can be

successfully applied in gear trains with limited weight. The

success of Westland Helicopter Co. which designed and

0 manufactured these gears is the best evidence of this statement.

The main advantages of the discussed gears-reduced

contacting stresses and improved conditions of lubrication - are

the result of special conditions of the contact of gear tooth
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surfaces and their meshing. Surfaces of the gear teeth contact

each other at a point at every instant, instead of a line; the

relations between the principal curvatures of surfaces are free

of the limitations which exist for gears having line contact of

the surfaces; the point of contact (it is the center of the

contacting ellipse) moves over the surface along a helix, and it

is due to this motion of the contact point and a favorable

orientation of the contacting ellipse that the conditions of

lubrication are improved substantially.

Consider that shapes 71 and E.2 are in contact at point M

-N (Fig. 1.1); E1 and E2 are the cross-sections of gear tooth

surfaces; the instantaneous angular velocity ratio is given by

m (1) 021

12 (2) 011

It is not excluded thatMl2 is not constant, =thus i 1 2 = f( 1 ) where
df i qa

1 is the angle of rotation of gear 1. The derivative d is equal

to zero if and only if the following equation is satisfied

P2-l = Ap = r 1 + r 2
-l (P2  - k 2_ X(P +Ap)+k 2  r 1 r 2 sin c  .

Here: P2 = C2 M,' P1  CIM where C 1 and C 2 are the centers of

curvatures of shapes E1 and E 2' respectively; Ap = P2 Pl

k = IM; r = 011 and r 2 = 021; c is the angle formed by the shapes

normal, n, and line r-r. Equation (1.1) results in that the

difference of curvature radii, Ap = P 2 - P1 , dependsonrl' r 2 ' 4 c'

'- £ , and p, . Thus, Ap is not a free design parameter and we

2
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cannot substantially reduce the contacting stress by minimizing

AP. This obstacle can be overcome if the gears are designed

as helical gears and the gear tooth surfaces are in point

contact.

Consider that the difference of curvature radii, Lp,

provides optimal conditions for contacting stresses, but does

not satisfy equation (1.1). If the gear tooth surfaces would

be designed as spur or helical gears, whose surfaces are in

line contact, then such gears would not be able to transform

rotation with the constant angular velocity. But if the gears

are designed as helcial gears whose surfaces are in point con-

pp tact, then both requirements - the reduction of contacting

stresses and the constancy of gear ratio - can be achieved.

Fig. 1.2 a shows a gear tooth surface of a helical gear.

This surface may be generated by a planar curve E in its screw

motion about axis 0-0.

Consider two cross-section of the gear tooth surface formed

by cutting the surface by two planes, P1 and P2 (Fig. 1.2a,b).

Shapes E() and E (2) lie in planes P1 and P2 ' respectively. The

location and orientation of E (2) with respect to E1) is deter-

mined by the axial displacement and rotation of E() in its

screw motion while it generates the screw surface of the gear.

We assume that in such a screw motion of EM, the gear is at

rest.

Now, consider that two helical gears are in mesh and their

screw surfaces contact each other at point M initially (Fig. 1.2

b). The shapes of gears 1 and 2 have a common normal n at M,

which passes through point I - the point of intersection of the

4
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instantaneous axis of rotation I - I with the plane P1 . Shape E(2)

of the screw surface of gear 1 will come in contact with the

corresponding shape of gear 2 if the gears will be rotated

through certain angles about their axes. For instance, shape E(2)

of gear 1 will come in tangency with the mating shape of gear 2

4(2)(3
if shape Z takes the position of Z(. This position can be

reached if the gear with its screw surface (thus with the shapes
(1 ( )13) (i)

E and E ) is rotated about axis 0-0. Shapes E and Z have the,

same orientation but lie in different plane P 1 and P2'

respectively. In the process of meshing of helical gears with

Vthe type of point contact described above, the gear tooth

surfaces contact each other at every instant at a point along the

line ML, which is parallel to the axes of gear rotations. Line

ML is the line of action of gear tooth surfaces.

It is known that a screw surface of a helical gear may be

generated by a cylindrical surface Z whose generatrix are

parallel to plane 7 and form a certain angle with the gear axis

(Fig 1.3 a). Plane ris the tangent plane to the gear cylinder

of radius r. While the generating surface C translates withC

plane 7, with velocity v, the gear rotates with angular velocity

w, where w =v + r. Plane irand the cylinder of radius r are the

axodes.

To generate gears having point contact of their surfaces, we

have to use two generating cylindrical surfaces, Z (1) and Z (2)
0.1 C C

(Fig. 1.3 a), which contact each other along a straight line.

,. While plane 7 translates with velocity v, the gears rotate with

(1) (2)
angular velocities, CL and w respectively (Fig. 1.3 b).
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We may imagine that surface c (1) generates the screw surface

of gear 1, and E (2) generates the screw surface E2 of gear 2.

The surfaces of helical gears, E, and E2 , will be in point

contact and their line of action will be the line ML (Fig 1.2

b).

We have to emphasize that surfaces E W and E. (i = 1,2)
c1

are in line contact and E. is generated as an envelope of the
M 1

family surfaces E. (i. Using two different generating

surfaces, E (1) and c (2), we may generate screw surfaces for

both helical gears with a point contact of the gear tooth

surfaces, and overcome the limitation of the difference of the

curvatures determined by equation (1.1). The described method of

generation is the key to the problem of synthesis of helical

gears with reduced contacting stresses.

2. Generating Surfaces

Fig. 2.1 shows the normal section of the space of rack

cutter F which generates the tooth of gear 1. The shapes of the

rack cutter for each of its sides represent two circular arcs

(f)
centered at CF and C, , respectively. The circular arc of

.. p (f)

radius F with center atC f ) generates the fillet surface ofF F-

the gear 1 while the circular arc of radius PF with center at CF

generates the working surface. Point 0aF) lies in plane 7 (Fig.

1.3).

Fig. 2.2 shows the normal section of the tooth of the rack

cutter P which generates the space of gear 2. The shape of the

rack cutter for each side represents two circular arcs centered
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(f)------- -

at Cand C , respectively. The circular arc of radius (f)atCiadC f) PP

with center at C generates the fillet surface of gear 2

while the circular arc of radius p with center at Cp generates
-?1-

the working surface.

The shapes of the mating rack cutters do not coincide;

rather they are in tangency at points Ell and M2 .

We may represent all four circular arcs in the coordinate

* system S (x ay ,Z) by the same equations 4

a a a

(i) = P sine -bi Y = -(picosO. - a i ), z
(i ) 0 (2.1)Xa i i'Ya = -I a ="-

27.

Here: Pi is the radius of the circular arc, ai and b. are
I 1 1

alaebraic values which determine the location of the center of

the circular arc; 6. is the variable parameter which determines

the location of a point on the circular arc (0 i is measured

clockwise from the negative axis ya); Pn is the diametral pitch

in the normal section; and is the pressure angle. The element

proportions of rack cutters hI , h 2, h 3 and h4 are expressed in

terms of the normal diametral pitch, Pn"

It was mentioned above that equations (2.1) represent all

-' four circular arcs - the shapes of both rack cutters. Thus

equations

(F) (F) c(F _

Xa =F sin6F- bF y( F(PFCOSOaF)- z F 0 (2.2)

L:zjpresent the circular arc centered at CF (Fig. 2.1). I!
Knowing the normal section of the rack cutter, we may derive

6n! PA



equations of the generating surface using the matrix form of

coordinate transformation. Consider that a rack cutter shape is

represented in the coordinate system Sa (Fig. 2.3 b) while the

WW(i)coordinate system Sa translates along the line 0c  0a  with

- respect to S W 0c0a = ui is a variable parameter. Using the

matrix equation

()(i)
x W 1 0 00 Xa

= 1a' .'(i) u 1 os 1 Ya (2.3)
y W 0 sinA. csx. u.cosX.

c o 1 1 1 a

1 0 0 0 A

we obtain (i = F, P)

(i)
x = P isin 6i b i

C1 1

Yc W -(Pi cose i-a)sinXi + uicosX. (2.4)C ( i

z (P cos .- ai)cos X + uisin A

In the derivation of equations (2.4), we assumed that a.> 0 and
1

b > 0. The unit normal to the rack cutter surface is given bv

the equations

W.~ = , .( ),_ - c -C (2 .5 )n i -c 36 U1

Equations (2.4) and (2.5) yield

sine1

[n(i)J L 1 (2.6)nc  I = cs1 I

: " cose icosl 1

1012
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(F) (P) (FI
Consider that coordinate systems S and S coincide. Surfaces E

(P) c c

and Ec  will be in tangency if the following equations are

satisfied

(F) (P) (F) (P) (F) (P)
xc =x ,c'yc -y ', z (2.7)
* c c cC Y Zc zc(27

(F) (P) (F) (P) (F) (P)
n = n , n = n n = n (2.8)xc xc yc yc zc zc

Equations (2.4), (2.6), (2.7) and (2.8) yield that surfaces E F

and Z are in tangency along a straight line a-a (Fig. 1.3, a) if

the following conditions are satisfied.

F P p =c UF = Up, F = p - P b - F

(pp - PF)cos~c = ap -aF (2.9)

Here: c is the pressure angle.

The normal sections of the gear teeth do not coincide with

the corresponding normal sections of the rack cutters.

* Neglecting this difference we may identify the normal sections of

gear teeth with the normal sections of rack cutters. The shapes

of the gear teeth in the normal section are shown in Fig. 2.4.

These shapes are in tangency at ?oints Il and M-2. Considering the

two sides of the teeth, we have to consider two pairs of

surfaces, ZF and Z. Each pair of these surfaces is in tangency

along a straight line a-a (Fig. 1.3 a) and point M.(i = 1,2)

lies on a-a. The shape normals at M and M pass through point
1 nd ps2hog on

I which lies on the instantaneous axis of rotation and coincides

14
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(F) (P)
with the origins 0 and 0 for the position shown in Fig. 2.1

a a
and Fiq. 2.2

3 Tooth Surfaces of Gear 1 and Gear 2

We set up three coordinate systems: S and S rigidly

connected to the rack cutter and gear 1, respectively, and the

fixed coordinate system Sf (Fig. 3.1, a). Note that in Fig. 3.1

a, the fixed coordinate system Sf coincides with the auxiliary

coordinate system

The derivation of the gear tooth surface E1 is based on the

following considerations: (Here E 1 represents gear I tooth

surface, see also Appendix I)

The line of contact of the generating surface Z with the

gear tooth surface E may be determined in the coordinate system

S by using the following equations:
c

= C"; r c  =r c (ui ei C cl

N V(cl) f(u ,e ,¢l) = 0 (3.1)
=c -c 1

Here: r (u i, 0.) is the vector function which represents in the

coordinate system S c, the qenerating surface; N c is the normal

(c l ) it
*: to the generating surface; and c is the relative velocity

The subscript "c" designates that the vector components are I
represented in the coordinate system Sc. In the case of

transformation of motions represented in Fig. 3.1 a, the axodes

are the plane Tr and the cylinder of radius rl, and I-I is the

instantaneous axis of rotation in relative motion. We may derive o

16
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the equation of meshing as follows:

X Xc = YQ- Y = Zc- Zc (3.2)

N N N
xc yc zc

Equation (3.2) expresses that the normal to surfaces E and E

at their points of contact intersects the instantaneous axis of

rotation, I-I. Here

X = 0, Y = r 1 = £c c llZc

are the coordinates of I-I.
Equations (3.2), (2.4) and (2.6) yield

- (r ¢ -u cosX - a sinX )sine + b cose sinXF;
1 1 F F F F F F F F

f F (uFeFl 0 (3.3)

(ci) (ci)

Here: X = -b , a = aF are the coordinates of center CF

(Fig. 2.1)

The equation of meshing (3.3) and equations (2.4) of the

generating surface Z , considered simultaneously, represent a

line on surface Z (line LF) which is the line of contact of E~c c

and i The location of this line on E depends on the parameter
1. c

of motion¢ . In the case of bF = 0 equation (3.3) vields that
[-'.1

"" , - aFsin F (3.4)
UF cos X

for any (F

Thus the Iine of contact is a circle of radius ;F (Fiq. 3.2 a).

18J
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Fig. 3.2 b shows the contact lines for the case with b 0. it

results from equation (3.3) that

pr

U F = b FcoteO tanX F+ 11X - a Ftan F (3.4)

The ~ Fotc Fie apocos Fnint Fs6apoce eo
FF

Surface E 1 may be determined with the family of contact

lines represented in the coordinate system S V. Using the matrix

equation

r1  L c r J Llf J[Mfc c(F)

(F)-
cos P1 -sin , 0 r 1 (cos41 + 4 1 sinY1  x

(F)
sin4 1  cos'41  0 r I(sin I - c 1 cos4 1 ) Y

.d.(F) (3.5)o 0 1 0 z

Lo 0 0 1 11L

Jd:and equations (2.4) and (3.4), we obtain

,=~ (PF sineF - b F + r 1)cos

+ (P cose - b cote )sin4 sinA
F F F F 1 F

(3.6)
Y, (PF sine F - b F + r 1)sin

(P (cose - b cote )cos sn
aF

z 1 = cose cos.X - + b cote~tanX sinX + r tn
F F £ cosx F r F rl~tnF

Equations (3.6) represent the tooth surfaces of gear 1 with

surface coordinates Ci and To get the normal section of this -

20
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surface, we have to cut the gear tooth surf ace by the plane which

is drawn through the axis X1 perpendicular to the tooth direc-

tion in plane 7 (Fig. 1.3, a) The cutting plane is represented

in the coordinate system S1 by the equation (Fig. 3.3)

Y -Z tanx (37)
~"'l1 F

Equations (3.6) and (3.7) considered simultaneously yield the

followinq relation between eF and 1

A sine + B cos4 + D = E (3.8)
"I 1 I 1 I l I

Here

PFsine -b + r,
.A1  sinXF

BI = -PFCOSeF + blcote F

tan (3.9)
DI = rI  sinXF

aF

E = -PFCOSeF + - bFcot Ftan 2,I F F-Cos 2 XF oeF

Considerinq that F is qiven we may determine usinq equationFb

(3.8). It is easy to verify that ¢I = 0 with tanOF F

O We may represent the normal section of E in the coordinate

system S (x ,ylzl), where

21
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• * *,.

X = X y1  = YlCOSXF + zlsinXF' Z = -YlsinXF + ZlCOsXF

(3.10)

Eauations (3.7) and (3.10) yield

Sx = x l = 0, z (3.11)

1 1 1 1 cosF-

The sought-for normal section may now be represented by the

-4 following equations:

A.sinP1 + B1 cos¢ 1 + DI# 1 = EI

X= sinAF(Aicos I - Bisin I ) (3.12)

4 y = 0

= -E +
1 1t

Here A , BI and EI are functions of F(see equations (3.9)). The

x- axis is the axis of symmetry of the normal section. "4

Equations similar to (3.12) can be used for the deter-

mination of the normal section of the "fillb-t" surface, but we

- have to substitutepF ,0 F ,bF and aF by pF F b and F

respectively (Fig. 2.4 and Fiq. 2.1). The circ'jlir arc DE

represents the fillet of the rack cutter in the normal section,

points D and E are the points of tanqency of this circular arc

*; with the upper and lower parts of the shaDe of the rack cutter

*' (Fig. 2.1).

Equations (3.12) are of a general nature and they can be

used for all cases of the generation of gear 1 with a rack cutter

23

IL4 .6rN..



having the shape of a circular arc. In particular, these

equations may be used in the case of generation of the "fillet"

Asurface of involute gears.
Similarly, we can derive equations of the tooth surface of

gear 2. The equation of meshing of the rack cutter P and gear 2

is given by

- upCOSX a sinX )sin + b cosO sinX

2 2  P p snp p p P

(f(up, e , ) = 0 (3.13)

The line of contact of Z and Z is represented in S by
an 2 C

equations

x(P) = psine
4%' yC -( P ) = -(ppcosp- ap)sinXp + b cote sinXp

-apsin)p + r2 2  (3.14)

z (  = pp COSpCOSA p- + bpcOtO tanA psin p+ r2 P2 tanA P

(p

The coordinate transformation from Sc to S is

the followinq matrix equation (Fig. 3.1 b):

r = r (P)]
L21 = M2 Jt~pcJr C

S(P). cos¢2 sin42  0 0 1 0 0 -r 2  x
(P)

-sin¢ 2 cos¢ 2  0 0 0 1 0 -r 2¢2  Yc

0 0 0 0 0 1 0 p )

* 0 0 0 1 L0 0 0 1 _ 1

24
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cosp 2 sin 2  0 -r (cos42 + p2sin 2 ) X (p )1

-sin 2 cos, 2  0 r (si n 2  cos 2) (P)
2 22 n 2 -2 ~ 2  y c

0 0 1 0 z(P)3.15)
c

0 0 0 1

Equations (3.15) and (3.14) yield

x (oPsine b - r2 )cos 2

- (ppcosep - bp cotep)Sin 2 sinAp

(3.16)

Y2 = -(ppsin0p- bp - r )sin2

-(ppcos0P- bpcote p )cos4 2 sin Xp

ap

Sz cose cosx - + bpcote sinX tanp + r 2 4 2 tanXp -

We will determine the normal section of Z2 by cutting the gear

tooth surface by the same plane as we cut E Considering

simultaneously equation (3.16) with the equation

Y2= -z 2 ta np (3.17)

we get IN

1 1 sin 2 + BIICOSc 2 + DII¢ 2 =E 1 1  (3.1R)

Here:

; 25
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A1 1  -ppSinep- bp- r2AII= Pp sin6 PbPr2
sinX P

BI= -ppcose + b cote

tan 2 x 
(3.19)

D r 2-2 sin P

E II = -Pp ep + b pcote ptan 2xp

cos
~P

* We may represent the sought-for normal section,in the coordinate

system S2 (x2 Y2' z2 ),whose orientation with respect to S 2 is

similar to the orientation of S with respect to S1 (Fig. 3.3).

Using equations

, 2 (3.20)
2 2' Y2 = z cosx

which are similar to equations (3.11), we may represent the

normal section of S as follows

AiIsin 2 + Bilcosc 2 + D II 2 = EII

x (-AIIcos2 + Biisin4 2 )sin), (3.21)
y 1 = 0

2 ,

- z =-EII+ DIIc 2

Equations similar to (3.21) represent the normal section of0.1

the "fillet" surface. To derive these equations, we have to sub-

stitute Pp. 0 p, bp and ap by p f), f), b f ) , and a f in equations

(3.19). The normal section of the "fillet" surface of the rack

'V
26
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cutter P is represented in Fig. 2.2.

4 Principal Curvatures and Directions of Gear Tooth Surfaces

The principal curvatures and directions of two contacting

surfaces are necessary to define the size and direction of the

contact ellipse at the contact point. If the relations between

the principal curvatures and directions of two surfaces which

are in mesh are known, the solution of this problem can be signi-

ficantly simplified. Such relations were worked out first by Dr.

F. L. Litvin.

Step 1: Principal curvatures and directions of the

generating surfaces F and E P

The rack cutter surface E and Z and their unit normals are

represented in the coordinate system S by equations (2.4) andI' c
(2.6), respectively. The principal curvatures and directions for

a qiven surface may be obtained by using Rodrigues'equation [5]:

V =-n (4.1)

Kre: K are the principal curvatures; V is relative

velocity of the point of contact in its motion over the surface,

and F is the velocity of the tip of the unit normal in the above

motion. Equations (2.4) and (2.6) yield the following

expressions for the principal directions and curvatures:

A.
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du VW cose.
(=) 0 i~i )  rI ni K

_ _ W I I

(1).d.- sVine ncosX.

(i = F, P) (4.2)

de. 1
1 rII

d.(i) -.rIl (i)
(2 0, in - cosX. , K = 0, (i =F, P)

(rIL sinki (4.3)

Subscripts I and II desiqnate the two principal directions and

curvatures; the unit vectors i(i) and i ( i ) are given in the
I -II

coordinate system S but they are represented in the coordinate

system Sf by the same matrices. The above unit vectors may also

" be considered as the unit vectors of axes yt and z_ of the

coordinate system St which is riqidly connected to the rack

cutter surfaces, EF andy p (Fig. 4.1). The unit vector of the

x - axis coincides with the common unit normal to surfaces E

and 7 p along their line of tangency, axis z . Centers CF and

Cp are the centers of the principal curvatures < and K(P )
P;', I

(Fig. 4.1 c).

M Wi)The column matrices [iI ) and [ii ) ] may be also derived by

using the matrix [Lft which represents the transformation of
ft

direction cosines in transition from S to S Usinq the drawinqs

of Fiq. 4.1 c, Fiq. 2.3 and Fig. 3.1, we obtain

.Lft] Lfc L Cal L at2

ro 28
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sine. cos. 01 1 0

-cose isinx i  sine sinX. cosA i . ISi I fI

cose.cosx. -sine cosx. sinAL

01
• [Lft] 0

"," 1(4 4 )
"101

where: i F, P and

is the nressure angle (FIg. 4.1 c)

Step 2: Principal curvatures and directions of Z

We may determine the principal curvatures and directions of Z

by using the following equations:

tan 2a(Fl) = 20 1  
(4.5)

(F) (F) ()-] KI KI I + G

+ K + K +S (4.6). .. I II I II

(F) (F) (1)
- K + G

q[(1) -K(1) I (F)(47

I II cos 2a (F l)  (4.7)

.... i (i

S( i) 31 32
(1 ) (F ) (F) (1) (Fl) (F) (1) (4.8)b 3+ (v(. i I )a 3 1 + (y i )a32

G(1) = [a t'2 - [a(l2

G ( ffi 32 _ (4.9)
b M)+ (v(Fl)i (F) a(1) + (v(Fl) i(F) (1)

3 1 31 '~ I 32
(1) [a31 ]2 + L 32

) a1)+ (+FI) (F) )a) (4.10).b3 )  v( i 31 ii' )a 2-

30
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(1) () (Fl) (F)1 - (Fl).(F) (4.11)

(1) nF F (F)()a J) (Fl) ( (v.1 (4.12)32 - " II ).
b 1) J inF) 11) F)] [(F) (F) v11 )  (4 13

3 tr -tr (

All the vectors of equations (4.5) - (4.13) are represented in

the coordinate system Sf and the coordinate system Sh coincides

with .f (Fig. 3.1); I and KII are the principal curvatures of

1F1)is the angle which is formed by vectors i(F) and i

where i is the unit vector for the principal direction I on-. (F) (F),

surface (F) - = - and 0(F) - are the principal curvatures
1 F 

d,
of F . Let us derive the following auxiliary equations

(Fl) (F) 1) 1)( 14)

(F)(

Vector - 0 because the rack cutter performs translational

motion (Fig. 3.1 a)

F) (Fl) i.(F)] = - 1 sin F (4.15)

.[F) (Fl) (F)] (1)

-o II sin0FcosXF  (4.16)

V The point of contact of surfaces Z and Z lies on a straiqht

line which passes throuqh the point whose coordinates are given

by

31
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1)1

X f = ,FsineF - bF + r I  (4.17)

(1)
Yf =- (PF CoSF - bFcotOF)sinXF (4.18)

(I)a
zf = ccosX F + h cote tanX sinX + r ltan

f ~F ' F F cosX F F F F F IltnF

(4.19)

Here ' F 6p= e is the pressure angle at the point of contact of

surfaces Ei and 72* Fquations (4.17) - (4.19) may be derived

from equations (1.9) with 0 taking into account that the

coordinate system S coincides with Sf. The transfer velocity
h C

of the rack cutter is (Fig. 3.1, a):

v(F) Mr (4.20)
-tr

"'J' 0

The transfer velocity of a point of gear I is given by

v (1 (1) x r~l (1) =)

-tr FfysF1

(PFC°SF b cote )sinx

F.F.F F F

(4.21)
F sinCF - bF 1

0
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The sliding velocity is given by

SV -v (PFCOSeF bFcoteF)sin F (4.22)

PF s ine F - bF
0

Thus, we obtain (see equations (4.21), (4.2) and (4.3)):

(Fl) (F) (1) b
v i 'F sine F(4.23)

v (FI) i (F) 11) F sin (4.24)
(F sine) eFCSF

Usinq equations (4.11), (4.12), (4.15), (4.16), (4.23), (4.24)

(4.2), and (4.3), we obtain

(1) F FsinXF:2. a 31 - ( Fsin F  (4.25)

(1) (1)
a = sin6F cosxF (4.26)

Tsinq equations (4.13), (2.6), (4.20) and (4.21), we get

(1)2-b = l)) r lsine (4.27)31 F

(1) (1) (1)
We may now derive the final expressions for F G and S as

' ';' fol lows :
Oa bF

F -sinX Fcos)
F

"1"F F F-(4 . 28 )

A1

F.- 33
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.1i

42

b F sisX 1

(1) I si F's2F (4.29)G = - A1

[b sinX F1
(1) , sie +sn eCos 2

(1) siF F F F (4.30)
A1

Here 4-

A = r sineF + bF - F ]-Fs in2F + sin2 6FCos2 (4.31)
1F F sin S~FJLPF ~ sine F FO XF]

Equations (4.5) - (4.7) and (4.25) - (4.31) determine the

principal curvatures and directions of surface EI at the point

of contact of surfaces Z andE 2
1 2

Step 3: Principal curvatures and directions of Z 2 2 (P) _/i=

The principal curvatures of the rack cutter E are: K = - '

!P) = 0; the principal directions of E are the same as of F;

Usinq similar derivations, we obtain

0
(P2)

0 (4.32)

(P2)P] snX f

--

(P) (P2) (P) (2) (P) (Fn. i = sinxp n (4.33)

('P) (P2) (P) (2)

nri i1  s i ns6cos P (4.34)

(2)
x P, sinep- b -r + C (4.35)

(2)
Yf = -(rPcosep- bpcote )sinXp (4.36)

34J,
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62 a
z p cose cosx - + b cote sinX tanX + ,tn

(2) (4.38)

F (2) 1
Yf

v(2) - (2) xr(2) +cx (2) - -w.(2) (2 ~C (.vA J Wx(.9

-tr -fr f

(P2) *()(2) b()-~F)(.1
v V(P v 2=- oe- poeps

. t -Irp

pp sie p b p(4.42)

(P (P2) (P ) (2)bP -snP) (P) i(F) (4.41

(4.43)

(2 (P) (P2)i(P) 1 (P) (P2) b (2) X
a = n 1cu K (v (P (2 )=p si e c s

0. (4.44)

(2) F (P) (P2) (P) (P P ) P2
a L (v sin~ e s

32 R I I35
(4.44

042
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(2) a 2) a (2)
31 32

- sinXpcosXp (4. 46)
PP

A 2 2

a -(2) (ap) ) 2/ - sin epCos Ap
G (2 31\ 2 - P) 2 (47

W (2 A 2  =)b si 2 + 2  (.7

(2 (a (2)2 + (a (2)) 2  
\\__________________________(2 2

A 2  A 2
Here 2  2 (4.48)

" A2 - r2 sin6p - ( + 2SpCos2A (4.49)2"- P si- ) pp sinep + sin
0°P

The principal curvatures and directions of E2 are determined as

follows

, 4 (P2) F2

tan2 a = 1 (2) (4.50)1 + G -(2 )
". Pp

K(2) (2) 1 + (2)
K + K +-I II - (4.51)

* 1 i (2)=--G
K (2) K (2) P (4.52)" ~ ~ ~ I (P-2)< =(452
I'-I cos 2 (P2)

1W

*; Fxample 4.1: Principal Curvatures and Directions of Gear Tooth

Surfaces
in. in.

Given: The rack parameters PF = 0.7 p = 0.775 (See

Fig. 2.1 and Fig. 2.2); the gear parameters: No. of teeth N I

36
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12, N 2 = 94; lead angle XF Xp 750; nominal pressure angle

0
e = 30';normal diametral pitch P = 2;

n

(1) Pinion: By using equations (4.5) - (4.31) we obtain

A1  = 1.70882, F ( I ) = -0.02549, M = 1 1 =  -0.05648, S 11 )= -0.07608,

principal direction a(Fl) = 0.982940 (Fig. 5.1), and two principal

curvatures: K -
= -149529 ( ) = -0.00936.

(2) Gear 2: By using equations (4.32) - (4.52), we obtain

A 11.98175, F ( 2 )  = 0.00429, G( 2 )  = 0.01179, S(2) =  0.01458,
2

principal direction a (P2) -0.192370 (See Fig. 5.1), and two

principal curvatures: K (2) -1.27715, K (2) 0.00141.

5. Contacting Ellipse

The tangent plane to gear tooth surfaces is formed by axes yt

(F,P) (F,P)
and z (Fig. 5.1 a). The unit vectors i and i represent

• the principal directions of surfaces EF and Ep of the rack
(Fl)(P2)(F, P) "Ko

cutters. Angles 0 l)and a ( P 2 ) , measured counter-clockwise from 11

determine the principal directions of gear tooth surfaces El and E
( 1) (2)

respectively, with the unit vectors i and i

Consider that the principal curvatures K()' (1) K(2), (2)

of surfaces E1 and E2 are known. Also known are angles o(Fl) ando(P 2 (2

We may then determine the dimensions of the axes of the

contacting ellipse with respect to the elastic approach of gear

tooth surfaces and the orientation of the contacting ellipse in

the tangent plane T. The equations to be used are as follows

* 5,61:

[(1) (2) ( 2g~~o~ g24 E 1i
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g1) (2)+ (,C2 2g cos2 + 2-- -K -1g1 2 g2

(5.1)
a b 2;'--

sin 2a= gsin 2c

cos 2a = g1 - g2 cos 2a ()2o

(1) (1) (1) (2) (2) (2) ()()
Here: K z  I + K ii ; K I + KII ' gl -KI - KII

(2) (2) (P2) (FI)
g= K I  II 0= - ; 6 is

"

the elastic approach of gear tooth surfaces;a and b are the axes

of the contacting ellipse anda is the angle which determines the

orientation of contacting ellipse. Angle a is formed by the

q - axis and unit vector i(I ) and measured counter-clockwise from

axis .9 to i(1 )(Fig. 5.1 b). Axes p and are directed along the

b- and a-axis of the contacting ellipse. The magnitudes of a and

b are expressed in terms of the elastic approach 6 which can be

obtained from experiments or calculated.

Example 5.1: Dimension and Orientation of Contacting Ellipse

The nominal rack and gear parameters are the same as given

in Example 4.1. In Example 4.1, we found a = 0.98294',

( 02) 0.192370; the two principal curvatures for pinion

i0

Xl = 1.49529 and K(M= -0.00936, and two

principal curvatures for gear surface E are K 127715 and

K (2) 0.00141. By substituting these values into equation

(5.1), we obtain A = 0.1110, B 0.0035, a = 3.0026,

b = 16.91586 and a 82.93920.
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6 Velocity of Motion of the Contacting Ellipse Over Gear
Tooth Surface

The velocity of motion of the symmetry center of the

contacting ellipse over surface E, is represented by the

following equations [5,6]:

11X1 +a12x2 = b1

a2 1x1 + a22x2  b 2 (6.1)

a3 1x1 + a32x2 =b 3

Here:

a 1  -(1 '(
2 ) + g2 cos2u);4al =a" g

a 12 a a2 1= g2 sin2o

a = (1) +1 (, (2) s2a )22 I 2 E 2co

a 3 2 =hill J12) (1)] K (1) (v(12) i)

a =[ (1) (12) ( - 1)( (12). ()(2322

4.- 1 (12) (1) ( 1 ) ( ) ( 2

2 L" i([n)(1 2'E+-cosa

(v(12) 1 (2 1

b (in II 2) i g1sin2a

I i (12) (I) ) (K (2)_ (2)
2co)

,"b n n(1) ( 12 )  i 1) n W-( (• i ( ) (

~- II g2
s I

i3 = trJ n -tr

K ()and 1i)(i 1,2) are the principal curvatures of surface
I 11. i l

; a is the angle formed by the unit vectors i ( 1 ) and i(2)

" 40 '
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* .(l) . *.(2)

and measured counter-clockwise from iI to i( (Fig. 5.1 a);
.(i) .(2) .AlI and i ( represent the principal directions of surfaces E1

and E2 n is the unit normal to the contacting surfaces

represented in the coordinate system Sf by equations (T.2); (.
(2) (12)

and (2are the angular velocities of gear 1 and 2,w(1,>.' (i) (2) Wi2[-
() - ( v is the transfer velocity of the contacting

-tr

ellipse in the transfer motion, with gear i (i = 1,2). Here: v )  "-•( ) (1) (2) (2) ( )(2) (1) ,.x rf ; t = x r + c x ( where r is the

position vector of the point contact represented by equations (4.17) -

(4.19); c (r + r ) i; V (12 )= v (1) - v (2) is the sliding
1 2 - .tr -tr

velocity. Considering the coordinate system Sf , we have

J; -'+ r

PFsineF bF + r1(11)
r rf = -( PF COSe F  b bFcote F )sinX F

" a F

P Cos 6 CosaF + b cote tanX sinX tn
Fc Fc F cosx F F F F+ r1 1  F

L (6.2)

(1) ( - ,1 ,k (6.3)

= = k ) k =m k (6.4)

v [ (1)].
yp

(1) (1) (1) (I) ( )

V Mtfr(f) f 0.-1

(2) (2) (1) (2)'t Xrf + Cx w &-Vtr f)

41
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* rrwr - Y 1 )~ - -Yf

Y f -yf
(2) (1) (1) (1)..

xfC = m 2 1  xf -C

0 0 (6.6)

(12) (1) (2)

f ~tr(f) vtr(f)

y (1 + m 2 1 )

S11) - )  + m + m c

0 (6.7)

(12) J2) ( )
f f f 0

-(I + m21) (6.8)

¢..- sin0 F

n~l) -cose sinXF
f FsinF

cose COSXF cs F (6.9)
"i"(1) (2)

Using coordinate transformation, we can transform (,f , (2)

v) v v12) and n(1) from coordinate system-tr(f) ~tr(f) -q

Sf to Sq by using Fig. 2.3, Fig. 3.1, Fig. 4.1 c and Fig. 6.1 a.

We obtain:
0

L~ [L.. Li [Li [LiI [qf] = L ta ]  Lacj Lcf ]

sine F (FF cose F1co F , F
Cs-F co: ie F CoaCO sn OAF sne Cosa s F+io ln

OS cosc (F, 1) -sn ic(F 1) Fin + Cos (F, 1 (F, F O Ot 5
CS F s i Fo s C O S A -s i n e F s n s C s l n

- ".ww. ose-Fsinc(F'l) -sineFsinc (F,1)lsinl.F + coso (F, lcosl sineFsino(FlosxF+oso(F,lAinxFJ ""

(6.10)
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q qfJ

F F

sine sine (F,1) + Coa (F,1) sin (6.11)
F.-' L F '"F "FJ

* (2) ~Lqf (2)]

F -

-m 1 (1)sine Fcoa (F,1) cosxF + sine (F,1) sifl F

Linsine a CsxF + Cosa siX (6.12)

(1) [ L 1r (
Ytr(q) Lqfl [Ltr(f)j

(1 Mie + x (1)sinX Coae

(1) caseFcoe ( (F11) + (F,l)
Yf Cos Coa IinOoa senXcasen CoSXF

(1) Moe(Fin)a ()SMIsine sine (F,1)sin + Cos (F,1) casL f CaFs nf F F 0~
(6.13

(2) FL 1v2))Ytr(q) -Lqf j1 tr(f)

(Y1)sn (1~)- ~iXCS
Yf, sF -(f F c~iXcsF

(1 Moe CS(F, 1)+ (x~')- c)lsne Coa (F,1)sin + sine (F,1) COSY
- 2 Yf COFC f F F S

(1)Wcs sn (F,1)+ ,x(1)- 1)-e sine (F,1) sin + Coae (F,1) aosxF
Yf caeF sie ~f C) 1 SnF F0

(6.14)
(12) rL v( 12 )]

-q =jqfJ f

y ( + m s n -(,1) + 1)m + ~ m c sin e C a e( l s n + ne t b sx I
f 21 F in21 2 1  F11 F

=1) (1) -(F 1 +x (n1) as)c s + ( s in B.s in (F~ l 1 sinXF+ c a(F , )C X J

Yf G+ ' 2 1 )case Fsina 1f + 1 m2

(6.15)
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(12)= Lqf][w( 1 2 )1

(l~ r(+ m 2 11 Cos eJF CosXF -
-(1) j1(F,l) ± (F, 1)s J(.6

= 1 1+ m 21) l-sin6F Cos(F'lCos XF + sin(F'lsinX F )  (6.16)

(F,l1) (F,l1)
L(1 + m21)(sineFsin F co s 'F + Cosa SinlF)

" .. ~_ n( ) =[qf] In f'

0 (6.17)

Ii]!
Also, we may represent the unit vectors iI ) and i(l) of the principal

directions of surface E1 in coordinate system S as follows: (Fig. 6.1b):

"- i[1  1 ](6.18)
I 0

i 0 (6.19)

,..,L 1
--... i

n 1)(1) 1) n~) 12 x(1) _ (12)[il (12) _ i ) z

(I (12 ~ zq

(1 (sine F (F,1) F (F, 1 F)
+ ( (sine sin lcos F + cosa ()sinF

(6.20)
[ 0", [ n (1 )  w( 1 2 ) i(1) =  n ( 1 )  (W ( (12) ~ 1 'M Jo 12)".

- . -. yq

= (1 + m2 1 ) (-sinFCos(Fll cosx + sine (F,)sinXF F

(6.21)

45
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n (12) |1)] 1 ) I) (1 + (F, 1) W I Sin I..

+ y 1 1 ( + I )Cos FCoscl(F' ) (6.22)f, m21 F

-[(12) i 1 [-xll in21) +n 2 1 c] [-sin6 sin l)sinX. + cosc('ios),, I

- (1) 1 + M )cose sino (F,i) (6.23)

f 21 F.

n . [ (1) (2) v (11]  ( -(2) x I)
-tr = nq (q xVtr(q)

=m 2 1 ( )) 2 (1) + x(1)sin F
(6.24)[n(1) (1) (2)] (1) (2)

2~ t v n "(q x tr(q;)

(() 2 1)n ( 1) sinF= -21 Co sO F + f 1

(6.25)

An easier method of deriving equations (6.20) - (6.25) is to

S,.-. consider the tangent plane in Fic. 4.1a and the twc unit
.. (i1) (1)

vectors i and i1 1 along the two principal directions of gear

surface Z1"

The projections o i I and i ( I ) along axisX t  Yt and Z are
T roca II a

expressed as:

C. (Fl)

i' (6. 26)

sine (F,l)

0.~0

.(F,1)
i li -s na I (6. 27)I [coso (F'I)

46
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usini the matrix transformation of direction cosines in transition

from St to Sf (Fig. 4.1 c), we obtain

I Lf t] I L f ] [L c] [L at]

sin coseF 0 1lF
FF F FF

L cosO FcosXF sieFcos XF SF

icoso Fl

Lsinc)

rFl (F, 1)
s- - Fos in, cosc + o si (.9

s i nKcs iflFCOCn o + csn .iCo 0F1 (.9

- (F,1)

- (F,1)

(F,1) (F,l) (.0
-sin )s in ;i n c + cosyvcosc (.0

-s(F,1) +(F,1) OS
sncosysinc + FJ

47



' (12) = (1) - v(2) (6.31)
~-tr -tr

: 1x r ( ) L (2) x r (i) + C x U) (2)

- f f -

where: c = (r + r2 ) i

1 2

r(l) = 1i r(F) ] (6.32)
f fc c

cc
-4.

" .(F)-1 0 0 r I c

0 1 0 -rl¢ 1  y(F)

0 0 1 0 z(F)

N C
0 0 0 1

PF sine F b F + r 1

--.[ -(PFcoseF- bFCotoF )sinXF

.OseFCS F F + bF coteFtanXFsinXF + rljlltanXF

(6.33)

..,(1) - (1)k
k

(2) - (2)

m 1 1 )k (6.34)

'.- ".-(2) r I

where: m ,( 2 )1

21 (1) r
2

'1) ( x r (1)

.0 Cose b cote )sinX

F F F F F](.5j

,D s le b + 6. 5

(2(2) (~1 ) (2)48(.61

i48

A' .,L:Sj



- - - - . " " - W%- V ' , r '. = . ,y . ' .. - ; r r

F' j k [1 j k
0 0 CL, (2) c 0 0 "

Yf z 0 0

(11 1 )

-Yf

m 21f

(12)= 1) _v (2)

tr ~-tr

+ m21 )Yf (6.37)"..m (1 21 c (1 + M 21 )x f )

L 0
(12) (1) (2)

0

(1 0(6. 38)

.,', ( 1 + m 2 )'L 21

4L) Lfc [ (6.39)

0 01 sin
1 = cos F sin6 F

- I

s in 6F

=-CosesinF]

SCosF COs)
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,''. ()1 + m 1 [sin ~Cos a(F,'1)+ sine coS) Fsina (F,'1) (6.40)

n (1 ( 2 i ( ---n ( C,-,( 2 i ( )

M w( ) ( 21)[-sinXF CosalF'l) + sineF cOSXF COSO ( F ' l ) ]

)(6.41)

v (). i ( y (i + mCa11 [m2c- ( + m21
(sin FsinFcosa ( F ' l ) + cS Fsin ( F , ) )  (6.42)

(12) ( 1 )  ( (1)+ m2 )cos san(Fl)+[i21c- (1 + )2
%"l fI 21 F 21 f 21

(coseFcosa(F,1) - sine Fsin Fsin (F'l)) (6.43)

M_(1 ) (1 (1) (2) (trp - r  =n tr

sineF f f k f

-cosOFsinXF 0 0 m21
( I)( ) w(1) x(1) 0

L COSFCosX F U-1 f f

= (, ) im2 1 [sineFxf - cosOFsinFy ] (6.44)

n .(1=2 n ~l ( 1 ) x v ( )
- -ttr

sine i k
.F f f

-I-"0I0(1
- -cose sin0 0

((1)) m LJ 2l fl )m i 2 1 (X x cf)
cose cosX WF ) (1) 1) () )L JL21 f -2) f

S 2 1 [sineF(x(l) - c)-cosOsinFY 1 ) ]

(6.45)

Cormnarinq the expressions in equations (6.20) - (6.25) and (6.40)

- (6.45) we obtained the same results. Substituting these

expressions into equation (6.1), we qet the coefficients a31' a32
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b i, b 2 and b Equations (6.1) represent a system of three

linear equations with two unknowns:

12

following condition is observed [5,61:t

a a11  a 12 b1

a 21 a 22 b 2  0 (6.47)

4.4

a 31 a b
31 32 3

It is assumed that surfaces Z andE 2 are in point contact at

every instant. Using any two equations of the system equations

(6.1) we may determine x and x 2oand thus (r x 1nd x 2))

An alternative method of deriving the relative velocity 01

" 1 2 :

,* ato helowint con tact is:red[,]

straight line which passes through the following

4 -

. eneuations:

(1) i n - b + r

(1) --p

S yf = -(coseF- bFcoteF)sin F

'aa

'-<z(1) 9 c s F a-f Co=CS + bFcot e tanX s in-LF+ r tan.,, F Fo F ox F 11 ;

.°?[i'. ( 6.4 8) ?
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Here, e F= 6p e = 300 is the pressure angle at the point of con-

tact of surface E and E

3/i'
1(1)

Step 2 The transfer velocity-Vr of a point on gear 1 is:

i (1) : (,1)x  (1)

-~tr ~

= (1) -xfi) (6.49)

0
.- (1)

Step 3 The direction of absolute velocity Vabs of point M of

gear 1 is parallel to the axes of gear rotation Zf1l)
f

Hence

()-d z ( 1 )

-abs dt

bF dFd I

= (-PsinFcosF tanXFsinXF) d + (rltarXF)F. > s in2F dt F dt
F (6.50)

Here: - 0 and- w . Therefore, we have:
dt dt

VK 0 i tan I
-r 1 X(6.51)

Step 4 The relative velocity v (1)of point M of gear 1 is:

(v"() is tangent to the helix of gear 1)
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v11  + v v 11

~ tr -r abs

S( ) _ v() .
r abs ~tr[ 1f

S 1ra F 1 (6.52)

The velocity v of the motion over surfaceE2 may be determined by

using the following equations [51:

, (1) + v 1 ) (2) (2)
-.. r Atr -Yr ~tr (6.53)

Equation (6.53) yields

v(2) = v(1) + 1 )  v(2) = (1) + v(1 2) (6.54)
-r -r tr ~tr -r

where v (2) is the relative velocity of the contact point M of gear

2; v (1 2 ) is the sliding velocity expressed in equation (6.7).

"- Example 6.1: Relative Velocity of Motion of the Contacting

Ellipse Over the Gear Tooth Surface

The rack cutter and gear nominal parameters are the same

as given in Example 4.1.

. (1) We may determine the relative velocity in the motion of

'1 the contacting ellipse over the gear tooth surface Z, by using

equations (6.1) - (6.46). Then we obtain X 1 and X 2 , thus

- 4 '%; (1 )= X2  2 1 2 0 5 7 ( i)
V (X2  2
r 1 + X2) = 12.06574

and a 16.14790 is the angle formed by V( 1 )and axis Z
f
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(2) By using equations (6.48) - (6.52) to solve V ) we~ r

,- , obtain

V (1)=  V 1 ) - V(1 ) = 12.06706 1(i)
Hr abs -tr

(3) From equation (6.54), we have

,.. v (2  11.99259 0 (1)

1(2)

and = 14.86740 is the angle formed by Vr(2)and axis Zf

Note: Due to a lot of computational procedures and matrix

transformation for approach (1), there is a small difference

between the approaches (1) and (2), and approach (2) is better

than approach (1).

*O 7 Computer Aided Simulation of Conditions of meshing

We simulated the conditions of meshing of gears, which have

* . some errors, using the equations of continuous tancency of gear tooth

surfaces. We set up four coordinate systems: S1 and S2, rapidly

-.-, connected to the cears and Sh and Sf, rigidly connected to the

-. frames. By using the coordinate transformations from S1 via Sh

to Sf, we may represent the equations of the surfaces Zi(i =

.- 1,2) and its surface normal in coordinate system Sf.

The conditions of continuous tangency of gear tooth surfaces

Z1 and Z2 are represented by the following equations [5,6]:

r ( F' 1 = r (2) (6 (7.1)
F1~( -fP p' '2' P'2'71

n (' i) = n (6 p (7.2)
.F' 1 -f p 2
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Equation (7.1) expresses that surfaces E1 and E2 have a common
point determined with the position vectors r l~and r2)

Equation (7.2) indicates that surfaces El and E2 have a common unit

normal at their common point. Equations (7.1) and (7.2) when

considered simultaneously yield a system of only five independent

equations, since n = n () 1. These five equations

relate six unknowns: eF, i, 1, ep, 2' , and thus one of these

" unknowns may be considered as a variable.

8 Influence of Manufacturing and Assembly Errors, and Adjustment
of Gears to the Errors

* -, (i)Change of Axes Distance

Fig. 8.1a and Fig. 8.1b show that the operating center

distance C' is not equal to the sum of the radic of pitch

cylinders in this case; Thus C' # r I + r2 . Considering the gear

tooth surface E1 and its unit normal nl, and gear tooth surface E2

and its unit normal n are represented in the coordinate systems

S1 and S2 , respectively. We may represent Zi and ni (i = 1,2) in

the coordinate system Sf using the following matrix equations:

[r = Mfi] [ri (8.1)

where (Fig. 8.1):

cos€,i sinej 0 0 ..

Mf = -sin cosj 0 0.

o o 1 0

o o 0 1 .
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Cos4 -sin4 0 C'

[ f~2 ] sin sCos 0 0

0 0 1 0

0 0 0 1

and [n~l)J = Lfj [n, (.2

where: - Aq i

Lf 1] -ocjsinn 4  ] os
00

L

cos -since 0

. f 2 = sin ' cos 0 0-

•20 0 1 IZ

' ]and are the angles of rotation of the gear in mesh with

the mating gear, while and are the angles of rotation of gear

1 2%

1 and gear 2 in mesh with the corresponding rack cutter.

using equations (8.1), (8.2) or (1.9) - (1.14) and (7.1),

(7.2) yield the following procedure for computations:

Step 1: Using equations n(I ) = n(2 )  we obtain
zf zf

cOS Fcosx F = cose pcosx (8.3)
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Equation (8.3) withX F = =Xyilsta

6 = e 8.4)

te 2:Uig(1) (2) (1) (2) (1) (2)
Stp2 sn qain y yf yf Yf and Xf Xf

we obtain tlbe following system of three equations in three

unknowns (6 ,P1 and 2 )2

sine sinp1  cosesinXcospi1  -sinesinp 2 - cos~sinXcosp 2  (8.5)

F sine b bF) (sinesinp1l- cosesin~cosp) + r Isinesinp1

(p,()sine b p) (sinesinp + cosesinXcosp) + r sinesinj (8.6)

(p sine -b F (sinecosp 1+ cos6sin~sinp 1 ) +- r 1si necosp,FF

( P sine b,) (sin ecosvi 2 -cosesinXsin 2 ) - r 2sin nOsp2 +

C' sine (8.7)

here: C' = r 1 + r 2 + LC and AC is the change of center distance.

The solution to these equations for 0, p1 and pprovides con-

stant values whose magnitude depends on the operating center dis-

tance C' only (the change of the center distance, AC). The loca-

tion of the center of the contacting ellipse is detemined by O(AC).

-. -'Thus, the bearing contact also depends on AC.

We may check up the solution to equations (8.5), (8.6) and

(8.7) us ing tlhe equat ion n~1l) n(2 ) which yields
xf xf

sinecosp1 + cosesinxsinp1  sin ecosP 2- cosesin~sin P2

Step 3: Knowing ewe may determine the relation between ipara-
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/ meters €land c 2 using equation z(
=

) z(2) which yields
f f

aF
PFcoscosx - Fo + b cotetanXsinX + rl itanX

FcosX F

cos.cosx - + bpcotetansin, + r 2 2tanX (8.9)

Equation (8.9) provides a linear function which relates €land 2
1 2

since 6 is constant.

Step 4: It is easy to prove that since G,pl and P2 have constant

vclues,the angular velocity ratio for the gears does not depend on

the center-distance. The proof is based on the following
--V

considerations: (i) Equation (8.9) with 8 - const yields that

- d¢ 1  r 2r< r d 2 and ; (ii) Since pI= i land '2 ¢2

are constant, we obtain that dl= d¢2, d 2 = 2 -and

W. . 1) de{ r2 iO
12 (2) ' - r ( .

de2_  1

2]2

Step 5: It is evident that since , pi1 and p2 have constant

values, the line of action of the gear tooth surfaces represents,

_ in the fixed coordinate system Sf, a straight line which is

parallel to the z - axis. We may determine the coordinates xWpar e t

and yf()(i = 1,2) of the line of action using equations (1.9) or
..-

(I.12)(see Appendix I). The location of the instantaneous point

of contact on the line of action may be represented as a function

4.?
of )
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z ) = PFcosocosx -aF + bFcotOtanXsinX + rl(pl + ej)tan>
f cos F

(8.11)

Step 6: We may also derive an approximate equation which relates

6 and the change of the center-distance, AC. Since il and P2 are

small, we assume cosp i = 1 and sinP i = 0 in equation (8.7). We

then obtain

Fsine F pin - b - r + C'

n - b P 2 (8.12)

where C' = r + r2 + LC

Equation (8.12) yields

AC + bF - b (8.13)
sine = F.

-PF PP

The nominal value of e° which corresponds to the theoretical

value of the center distance C, where C = r 1 + r2, is given by

b F - bp
sin 0 = F P (8.14)

" , PF PP -

Compensation for the Location of Bearing Contact Induced by AC

-. The sensitivity of the gears to the change of center

" distance, AC, may be reduced by increasing the difference PF -

However, this results in the increase of contactinq stresses.

The dislocation of the bearing contact may be compensated

for by refinishing of one of the gears (preferably the pinion) .1

1%
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with new tool settinIs.

Consider that Qo is the nominal value for the pressure

anile; b' and b' are the nominal values for the machine settings
F P

and , 0 are the nominal values for the radii of circular arcs.
F P

These parameters are related bv equation (8.14). The location of

the bearing contact won't be chanqed if the pinion is refinished

with a new tool setting bF determined as follows (see equation

(8 .13):

I C + b -bosineOF P (8.15)
si - 0 -- 0

"F 'P

b =b - C (8.16)
F F

- Change of Machine-Tool Settings bF and bP
b ..

. The change of machine-tool settings b F and bp causes: (i)

the change of gear tooth thickness and backlash between the

mating teeth, and (ii) the dislocation of the bearing contact.

The most dangerous result is the dislocation of the bearing

contact.

Using similar principles of investigation, we may represent

the new value of the pressure angle which corresponds to the

changed machine-tool settings by using the following equation

0.1
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Here: b and b are the changed settings; b ' bo ' b b,
P F F P P

where bo and b0 are the nominal machine-settings; 6 # 6° is the
F P

new pressure angle.

We may compensate for the dislocation of the hearing contact

makinq = . This can be achieved by refinishing of the pinion

with a corrected setting 'bF. Similar to equation (,.15) we

*obtain.'

b - bo + LsF - p 0 F (8.18)
'F P l

12 (i1) Misalignment of Crossed Axes of Gear Rotation

Consider that the axis of rotation of gear 1 is not parallel to

. the axis of rotation of gear 2 and form an angle A (Fig. 8.2). The

coordinate transformation from Sh to Sf is represented by the

matrix equations

r" (f1) [M f ]h r (l)], [n ] [L ] [n(1 ( .19

Srj L fhLrh f, n(fiJLLfhJ(8.19)

- where: .0 
0 0

o f 0 cosAy sin, 0 ; [LfR =  0 cos]Y sin&Y

0 -sinty cosly 0 0 -sin.L costy

I 0 0 0 1

"' rUsinq equations (8.19), (I.9)-(I.12) and (7.1), (7.2), we may

represent the tangencv of surfaces L and Z for crossed misaligned1 2
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gears as follows:

A200Sk_2 - R2 sinP12 + C =AicosiP 1 + T31sinp1i (8.20)

-A 2 s in.t.2 - B2coslJ 2 = (Alsinp1 - BlcosV.1)cosLY +

aF

(6.21)

(see expressions (1.11) and (1.14) in Appendix I)

co e ao" F -+ bcote~ sinx tanX + r4 tanA =

-A1 1i, B1op 1) iy+4,F coeF c F_ COSX F+

b F cote F tan>. F sin F + r illtan, F)cosiL-Y (8.22)

sin& cos'p2 - cos&" sinX ,sinp2  sineFCo5 ' + cosO sinX sinj1  (8.23)>

Psn ~iP,2 - cose Ps in,, Pcosj 2 = (sine F sinpi1 - cos F sin), F cos~j1)

cosi, +cosEQF cos'F s in Ly (8. 24)

cosu os -sine in~i COS6 sin> cosp )sinZy+
cos co>=-(iEFsn F F 1

cos'_ cosX cosLty (8.25)F F

Equations (R.20) -(8.25) form a svstem of five independent

equations in six unknowns: e % Ij ~l1 2 , 1 and 2' We remind

that only two equations from equation system (8.23) -(8.25) are

independent since n (1)= 1 andin~2  1.

The computational procedure is as follows: (i) We consider

e equations (8.20), (8.21), (8.24) and (8.25) which form a system

of 4 equations in five unknowns: eF0 P~ p and P ixing in

we may obtain the solutions by e 6 and e
F 1 P and12

(ii) UTsing equation (8.22) we obtain 2 1 (iii) Then, using

tho equations

= l P 1'~ 2 P2 (8.26)
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we can obtain the relation between the angles ¢ and of gear I
rotation. Function ¢2'( 4j ) is a non-linear function and its

deviation from the linear function is given by

e'. N1

-n- ~j(8. 27)
2

Here: ¢ (*{) represents the kinematical errors of the gear

train and and 6p ( T represent the change of location of

the bearing contact induced by the misalignment of gear axes.

(iii) Misalignment of Intersected Axes of Gear Rotation

In the case of intersected axes of gear rotation, two axes

form an angle _1(Fig. 8.3). The coordinate transformation from

-1; to S is represented by the matrix equations:

SMfh ), n Lfh n 1 )] (8.28)

where

cosLf 0 -sinAy 0

* .... fh] 0 1 0 0

sinLy 0 cos y 0
O:1

0 0 0 1
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-Lf h]= CosLY 0 -sinLy

0 1 0

i s inL - 0 cos~Ly

using equations (8.28), (1.9) - (1.12) and (7.1), (7.2), we may

represent the tangency of surface Z1 andE 2 for intersected

misaligned gear axes as follows:

A 2cos - B 2 sin; 2 +C = (A 1 Cos '1 + 1sinl~l)cosAy -

,Cos (CosX F + bFcoteFtanXFsinXF + rl itanXF)sinAy (8.29)Fv F F cOsXF F"'-F 1

,-A2sin 2 - B2 cosP 2 = A 1sinp 1 - B1 cos 1 .30

aFaDP cosQ PcosA - CoXP+ b Pcote sinX tanX P+r2 tanX =
P~ Pa.o~ p P P+r~

(ACosPI+ Bls inl)sin Ly + ( pCoF c + b cote tanX
11 PFcoFcosF CosX F F F

sinXF + rl ltanX F) COSAY (8.31)

sin6 pcos i 2- cosp sinX psin 2 = (sin6 Fcos) + cose FsinX Fsin 1I

cosLy- coseFcosX sinA y (8.32)F F

-sinepsin 2- cOSepSinXpCOS 2 = sin6Fsinp 1 - cose F sinXFcos 1 (8.33)

coS6 COSX= (sin6 cos 1 + cose sinXFsinil)sinAy+cosO ccs. coSZLy
* ... :

(8.34)

Equations (8.29) - (8.34) form a system of five independent

* equations in six unknowns: ep F P Pi ' P2 F K i and 2 Only

two equations from ecluation system (8.32) - (8.34) are

. independent. The computational procedure is the same as we

discussed before.

I-.

Compensation for the Location of Rearinq Contact Induced by the

Gear Misalignment

67
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The dislocation of the bearing contact induced by

misalignment of the axes of gear rotation may be compensated for

by the change of the lead angle XF(or X) This can be done

technologically by refinishing of the pinion.

Example 8.1: The Influence of Change of Axes Distance

Given: the rack parameters (see Fig. 2.1 and Fig. 2.2); the

gear parameters: No. of teeth N 1 = 12, N 2 = 94; lead angle X = XF P
= 750 nominal pressure angle e0= 300; normal diametral pitch Pn =

2; nominal axes distanceC=27.43482 in.;change of axes distance

IC = 0.021 in. Due to the change of axes distance the new value

0- of the pressure angle 6 is: (i) e = 12.820820 (exact solution

provided by equation system (8.5) - (8.7)); (ii) 6 = 12.709030

(approximate solution provided by equation (8.13))

The compensation for the dislocation of bearing contact is

achieved by the new machine setting b= bo -0.021 in. which

provides 6 60= 300 although C = C0 + LC.

Example 8.2: The Influence of Misalignment of Crossed Gear Axes

The rack and gear nominal parameters are the same as shown

in Example 8.1. The misalignment of crossed gear axes is given

by Lf = 0.10 (Fig. 8.2). The kinematical errors A j and the

change of 8F and 6p are given in Table 1.

The compensation of kinematical errors is achieved with the

chanqe of the lead angle of the pinion XF= 75.100 (AX = 0.100). 11
The kinematical errors after compensation are given in Table 2.
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Table 1. Kinematical Errors Table 2. Compensated Kinematical~Errors

e e ~F 1 (secods) 1 F p (secnds)

-200 32.26030 31.66060 59.88" -200 29.99880 29.99890 -0.00".

-100 32.26100 31.66130 29.94" -100 29.99960 29.99960 -0.00""

00 32.26130 31.66160 0.00" 00 29.99990 29.99990 0.00"

" 100 32.26130 31.66150 -29.94" 100 30.00000 29.99950 -0.00"

" 200 32.26090 31.66110 -59.89" 200 29.99960 29.99950 -0.00"

By using the proposed method of compensation we could reduce sub-

stantially the kinematical errors induced by the misalignment of
'S.

crossed axes of gear rotation (kinematical errors approach zero).

Example 8.3: The Influence of Misalignment of Intersected Gear
% tAxes

The rack and gear nominal parameters are the same as shown

in Example 8.1. The misalignment of intersected gear axes is

given by Ly = 0.10 (Fig. 8.3). The kinematical errors il and tL-e

"change of F and P are given in Table 3. The compensation of

kinematical errors is achieved with the change of the lead angle .

of the pinion XF = 7 5 .0 6 1I = 0.060). The kinematical errors
F -F

with compensation are given in Table 4.

Table 3. Kinematical Errors Table 4. Compensated Kinematical
Errors

"- i eF ep 2I eFep_ F _ _seconds_ IF_ (secofids)

-200 38.13580 37.75080 42.57" -200 37.12750 37.03760 5.17"

-100 34.79870 34.41380 19.98" -100 33.53270 33.48470 1.21"

0 31.59110 31.20630 -0.00" 00 29.98830 29.98980 0.00"

100 28.49100 28.10620 -17.65" 100 26.41910 26.48230 1.30"

200 25.48170 25.09690 -33.19 200 22.68730 22.83340 4.98"
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By using the proposed method of compensation, we could reduce the

kinematical errors induced by the misalignment of intersected

axes of gear rotation.

9. Computer Aided Simulation of Bearing Contact (With Computer
Graphics)

We simulated the bearing contact of gears by setting up two

coordinate systems: S1 and S2, rigidly connected to the gear 1

(pinion) and gear 2, respectively (Fig. 3.1). Due to the

computer graphics system, the figures showed in this section are

two dimensional computer graphics.

Fig. 9.1 showed the normal crossed section of gear 1

(pinion) in coordinate system S1 (Fig. 3.1 a), there are 12

teeth on the gear 1. We simulated gear 1 by considering the

equations (3.6) - (3.12), the xI and yl axes are the axes of

symmetry of the normal section. As we discussed in Chapter 3,

it is important to mention that the normal section of the "fillet"

of gear 1 can be simulated by using the same equations which we

simulated the normal section of the working part and substituted

~ ban a y (f), Mf M FMnF' CF P bF and aF by p 6 b , and aF in equations
."

(3.6) - (3.12).

. Fig. 9.2 showed the normal cross section of gear 2 in

coordinate system S2 (Fig. 3.1 b), there are 94 teeth on the

4."
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gear 2. We simulated gear 2 by considering the equations (3.16)

- (3.21), the x 2 and Y 2 axes are the axes of symmetry of this

normal section. As we mentioned above, the normal section of the

"fillet" of gear 2 can be simulated by using the same equations

which we simulated the normal section of the working part, and

then substituted Pp , ,b and aP by p(f) , , and
p , ap P p

in equations (3.16) - (3.21)

Fig. 9.3 showed the front view of gear 1 and the orientation

of contacting ellinse of bearing contact when the center distance -

did not change. It should be mentioned that the size of

contacting ellipse showed in Fig. 9.3 depended on the value of

elastic approach . Also, the contacting ellipses showed here

was a side view (the projection on x - z plane). Fig. 9.4 showed

the same case for the qear 2.

Fia. 9.5 showed the bearing contact of gear 1 due to an

increased of center distance 0.02 inches. Fig. 9.6 showed the

same case for the gear 2. From these two figures, we found that

Whe size and magnitudes of two axes of contacting ellipse are

chanqed a lot, this prove that circular arc helical gears are

very sensitive to the change of center-distance.0
Fig. 9.7 showed the bearing contact of gear I due to the

misalignment of crossed axes of gear rotation for 1.0 degree.

The size and maqnitudes of two axes of contacting ellipse were not

chanj;ed significantly. lig. 9.8 siowcd the same case for the Cear 2.

Fig. 9.9 showed the kinematical errors due to the misaliqnment of

crossed axes of gear rotation for 1.0 degree with and without
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compensation. From this, we prove that using the proposed method

of compensation discussed in Chapter 8, we can cause the

kinematical errors to approach zero.

10. Conclusion

The authors have presented a method of generation of tooth

surfaces for circular arc helical gears, derived the basic

equations which represent the geometry of gears, and proposed a

• " computer aided method for simulation of conditions of meshing and

of the bearing contact for these gears. The sensitivity of the

gears to the change of center-distance, machine-tool settings

and to the misalignment of axes of gear rotation have been investi-

gated. A technological technique for the compensation of the

dislocation of the bearing contact induced by the above errors

have been proposed.
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12. Appendix I Gear Tooth Surfaces

Gear 1 Tooth Surface. Substituting subscript "ill by "F" in equa-

-. tions (2.4) and (2.6) and taking into account that bF > 0,

we obtain:

-~ ~sine - bF F F

[(F)] ( F cose F a aF)sifl F + u FcosX F(.)

(cosCF a a)COSXF + uF sinX

F F F F

(F)J = o F sinXFj (1.2)

Equations (1.1) and (1.2) represent the generating surface

F and the unit normal to this surface. We may derive the equation

of meshing using equations (1.1), (1.2) and (3.2) with

:~F)= (F) =r 1  z(F)-(1)
Xc 0,Yc r11 13

x(F), (F) (F)
where c and Z are coordinates of the point of inter-

hAsection of the normal to E and the instantaneous axis of rota-

tion, I-I (Fig. 3.1, a). We then obtain

u cos - a Fnsi
fFuF, F~ PI = ~'1 F F FsinXF)sinF +

b~co~ sin? = 0(1.4)
F F F

0.



Equation of meshing (1.4) yields

rl - a FsinXF + bcoteFtanX (1.5)
UF = COSAF

Equations (I.1) and (1.5) when considered simultaneously represent

-. a family of contacting lines on surface Z F" Eliminating uF1 we

may represent this family of lines of contact as follows:

(F)- F sine - b
CF F F

(F) - ( sine - b )Cote sinX + r

(F) bta2l aF

z c(F) (PFsineF +b tan 2A)coteFcOSxF c F + r litanXF

S(1.6)

gUsing equations (1.6) and the coordinate transformation from

S(F)t o S we obtainSc1

x = (PFsineF - bF + rl)cos 1 + (PFcoseF - bFcoteF)sin isinXF

Y= (PFsinOF - bF + rl)sinOl - (PFcosOF - bFcoteF)CosplsinAF
aF ,FF

Z PFcoseFcosxF - F + b cote tanX sin F + rFtanX
F F F COSA F F F F F~r~tn

(1.7)

The surface unit normal is given by

-"'' sinecosl + coseFsinXFsinPl

i-s'" [niJ = [l sincinl coseFsinxFs 1  (1.8)
OO cossF c~so F

L.oe OS-

Using the coordinate transformation from S1 to Sh we obtain

1 h
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x = Alcospl + Blsinp1

0i (1) aF
Yh = A Isinp 1 - B 1 COSP 1

z 1 ) = PFcose FCOS F - + bFcote FtanFsinXF + rlltanXF

('.9)

sine FcOSl + cosF sinl Fsinp1

n J sineF inp I - coseFsinXFcosp I  (I.10)

Heecase F COSA FI
,.[ Here :

A 1 (6) in F  b bF + rI  B1 (eF) (PFcoseF bFcoteF)sin)Fr

and p= - (I.1)

Equations (1.9) and (I.10) with a fixed value for 4j, represent

in the coordinate system Sh, surface El and the unit normal to

Z1. These equations with different values for 4j, represent

in Sh, a family of surfaces El and the unit normals to these

surfaces.

....- The derivation of equations for gear 2 surface E.2 and its

., unit normal is based on similar considerations. We may represent

these equations in Sf as follows:

x (2) A2 cosi 2 - B2 sinp 2 + C

(2) = _
Yf A2 sinp 2  B2cosV' 2

""'' z( 2) ap
z[....of = pCOSepCOSXp a + bpcotepsinXptanXp + r2 2 tanXp

(1.12)
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sinep cos - cosep sinpsin 2

.n -sinepsinji2 - cOSenp Sinp COS1 2

cose p cosx P

Here:

rA2 (6P ) = ppsinep - bp - r 2, B2 (ep) = (ppcoSep - bpcotep)sinXp,

2and = - (1.14)

The nominal value of the center distance is C = rI + r2
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List of Symbols

(Note: i 1,2; d = F, P)

a Half the length of major axis of contacting
ellipse.

ad Algebraic values which determine the location
of the center of the circular arc.

a1) Auxiliary function defined in Eq. (4.11)

' a (1)

32 Eq. (4.12)

(2)"
a2) Eq. (4.43)a3 1  ".

(2)a3 2  Eq. (4.44)

A it Eq. (5.1)

A Eq. (3.9)

AII Eq. (3.19)

b Half the length of minor axis of contacting
ellipse.

b a parameter of tool setting
d

bd Nominal value for the machine settings
Sd

b Auxiliary function defined in Eq. (4.13)

-4

b3 Eq'4.45)

B Eq. (5.1)

B Eq. (3.9)

B Eq. (3.19)
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CF rakcutCe center of working part of circular arc

F

rack cutter F

-~ "C 
( f )

F center of the fillet of circular arc
'.V rack cutter F

C center of working part of circular arc
-Prack cutter P

(f)
C center of the fillet of circular arc
P rack cutter P

DI  Auxiliary function defined in Eq. (3.9)

D, Eq. (3.19)

E I  Eq. (3.9)

EI Eq. (3.19)

i)F Auxiliary function defined in Eq. (4.8),
Eq. (4.46) to compute the principal direc-
tions of surface Zi

g =K)- K(1) Auxiliary function defined in Eq. (5.1) to
1 1-1" determine the size of contacting ellipse

, K 2 - K(2)I Auxiliary function defined in Eq. (5.1) to
92 = determine the size of contacting ellipse

.i..) G i  Auxiliary function defined in Eq. (4.9),

* Eq. (4.47) to compute the principal cur-
vatures of surface Ei

id) (d) unit vectors along principal direction of
*. surface Ed

(i) (i) principal curvatures of surface Zi

.- : '
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+ ( Auxiliary function defined in Eq. (5. 1)

(2)*< (2) + ( Auxiliary function defined in Eq. (5.1)

IL projection transformation matrix; trans-ii] formation from S to S.

M point of contact of tooth surface

"Ml coordinate transformation matrix; trans-"J formation from S. to S.

n (d) surface d unit normal

(i) relative velocity of the tip of the unit
normal vector n.

,id) surface d normal vector

P Diaiaetral pitch in normal section
n

r position vector represented in the coor-
dinate system Sc

.m

r. Pitch radius of gear i

r.(ui, i )  surface Zi position vector with surface
coordinates (ui, 6

i )

S Sf coordinate system rigidly connected with
frame

S h  Auxiliary coordinate system h

Si (x i ,yi ,zi ) coordinate system rigidly connected with

_. gear i

S.' Auxiliary function defined in Eq. (4.10),
Eq. (4.48)
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.d generating surface coordinate

Vab s  Absolute velocity of the point on the
-abs surface Ei

-f Relative velocity represented in coordinate

system Sf of a contact point on surface Z1
with respect to contact point on surface 72.

-r~ Relative velocity of contact point on surface

vi) Transfer velocity of contact point on surface
-tr 

T

. '"Transfer velocities of points on surface
"i in coordinate system 1.

(21)
2)v Relative velocity of point 2 with respect to

point 1 (V 21)= v( 2 ) - V 1 ))

i Angle of the orientation of contacting
eldtpse measured from axis n to the unit vector

IC Change of center distance (inches)

Y ±misalignment of gear rotation axes

5).. Approach of surface El and E 2

* 20 Nominal value of the pressure angle

pressure angle of gear d

.,3. variable parameter which determines the
location of a point on circular arc gear i

helical gear i lead angle
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-i Auxiliary function

I 2 = ¢2 - Auxiliary function

Radius of working part of circular arc
rack cutter d

d Nominal value for the radius of circular
arc

(f)
d Radius of fillet of circular arc rack

cutter d

d generating surface d

generated surface of pinion and gear

Angle form by principal direction of
two surfaces measured from i I ) to i(2)

and positive angle for counterclockwise

C(Fl) An le measured from i(F)
ito l the unittvector

positive if counterclockwise

(P2)
0 Angle measured from i(P)to the unit vector

.(2 ) ; positive if counterclockwise

gear i rotation angle in mesh with the
3. -corresponding rack cutter

* ,gear i rotation angle in mesh with the
mating gear
kinematical error function defined in

Eq. (8.27)

pressure angle

igear i angular velocity
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